Left Termination of the query pattern p1_in_1(g) w.r.t. the given Prolog program could successfully be proven:



Prolog
  ↳ PrologToPiTRSProof

Clauses:

p1(f(X)) :- p1(X).
p2(f(X)) :- p2(X).

Queries:

p1(g).

We use the technique of [30]. With regard to the inferred argument filtering the predicates were used in the following modes:
p1_in: (b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

p1_in_g(f(X)) → U1_g(X, p1_in_g(X))
U1_g(X, p1_out_g(X)) → p1_out_g(f(X))

The argument filtering Pi contains the following mapping:
p1_in_g(x1)  =  p1_in_g(x1)
f(x1)  =  f(x1)
U1_g(x1, x2)  =  U1_g(x2)
p1_out_g(x1)  =  p1_out_g

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog



↳ Prolog
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

p1_in_g(f(X)) → U1_g(X, p1_in_g(X))
U1_g(X, p1_out_g(X)) → p1_out_g(f(X))

The argument filtering Pi contains the following mapping:
p1_in_g(x1)  =  p1_in_g(x1)
f(x1)  =  f(x1)
U1_g(x1, x2)  =  U1_g(x2)
p1_out_g(x1)  =  p1_out_g


Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

P1_IN_G(f(X)) → U1_G(X, p1_in_g(X))
P1_IN_G(f(X)) → P1_IN_G(X)

The TRS R consists of the following rules:

p1_in_g(f(X)) → U1_g(X, p1_in_g(X))
U1_g(X, p1_out_g(X)) → p1_out_g(f(X))

The argument filtering Pi contains the following mapping:
p1_in_g(x1)  =  p1_in_g(x1)
f(x1)  =  f(x1)
U1_g(x1, x2)  =  U1_g(x2)
p1_out_g(x1)  =  p1_out_g
P1_IN_G(x1)  =  P1_IN_G(x1)
U1_G(x1, x2)  =  U1_G(x2)

We have to consider all (P,R,Pi)-chains

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

P1_IN_G(f(X)) → U1_G(X, p1_in_g(X))
P1_IN_G(f(X)) → P1_IN_G(X)

The TRS R consists of the following rules:

p1_in_g(f(X)) → U1_g(X, p1_in_g(X))
U1_g(X, p1_out_g(X)) → p1_out_g(f(X))

The argument filtering Pi contains the following mapping:
p1_in_g(x1)  =  p1_in_g(x1)
f(x1)  =  f(x1)
U1_g(x1, x2)  =  U1_g(x2)
p1_out_g(x1)  =  p1_out_g
P1_IN_G(x1)  =  P1_IN_G(x1)
U1_G(x1, x2)  =  U1_G(x2)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 1 SCC with 1 less node.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
PiDP
              ↳ UsableRulesProof

Pi DP problem:
The TRS P consists of the following rules:

P1_IN_G(f(X)) → P1_IN_G(X)

The TRS R consists of the following rules:

p1_in_g(f(X)) → U1_g(X, p1_in_g(X))
U1_g(X, p1_out_g(X)) → p1_out_g(f(X))

The argument filtering Pi contains the following mapping:
p1_in_g(x1)  =  p1_in_g(x1)
f(x1)  =  f(x1)
U1_g(x1, x2)  =  U1_g(x2)
p1_out_g(x1)  =  p1_out_g
P1_IN_G(x1)  =  P1_IN_G(x1)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ PiDP
              ↳ UsableRulesProof
PiDP
                  ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

P1_IN_G(f(X)) → P1_IN_G(X)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ PiDP
              ↳ UsableRulesProof
                ↳ PiDP
                  ↳ PiDPToQDPProof
QDP
                      ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

P1_IN_G(f(X)) → P1_IN_G(X)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: